
ACL 2013 ;3PF�

�7UZoP¸Zµ½¸�R2b!

Ę¢Í!

takase!at!ecei.tohoku.ac.jp!

Ĝ�ACL!2013Mċ�ð;3PF�ĜĞĚěĤĚěĤ�



ACL2013rpƎčrƏ�
•  Sň)ŘĴŅŉăÜn"
– µ½ňćĸŘqÝƐŭŬšžƐ-ŉà£ŜŒŖĬŘ"
– �ĦŇŝŞůŝŉĩŘ
ĽĿŅ	�ńİŘ"

•  
Ņéĸŉ�ĶĪ"

•  �QįńĮĸıŘ"
– ŨŬŤƄƊŉ�Qį1ĊĮŖ8ĊŎń*�"
– ¦[ŉuēŜõŎŇĪŅ.þńİŇĪ"

•  e.g., 7Ċŉ� ŉĊ�Ŝ�ŖŇĪŅ8ĊňØĳŇĪ"
•  úWňŇŘ
Œ�ÝĵřĽ"

ĜĞĚěĤĚěĤ� ACL!2013Mċ�ð;3PF� ĝ�



ACL2013rpƎµ½Ə�
•  ŽƇūƁƌŪƇ!

– ¯"Ɛ5¯ůƌũŅâë(¬ŉÛ@į²¾ŀĽ!

•  Best paper award"
• ĻŚĻŚ²ƎÞßoPƏŒŁĳŃĪİĽĪ"

•  ��ŉóƐ¦jňŁĪŃŉµ½!

– ��ŉóƎqualityƏŉÓ5z[!

– Ã�ňÓ*ŉVŏ!

– TĲŇŀŃİŃĪŘŉńŊ!

Ğ�ĜĞĚěĤĚěĤ� ACL!2013Mċ�ð;3PF�



Å�ĸŘï��

•  ŽƇūƁƌŪƇ"
– Grounded Language Learning from Video 

Described with Sentences"
•  Haonan Yu and Jeffrey Mark Siskind"
•  Best paper award"

•  ��ŉóƐ¦jňŁĪŃŉµ½"
– What Makes Writing Great?  

First Experiments on Article Quality Prediction in 
the Science Journalism Domain"
•  Annie Louis and Ani Nenkova"
•  TACL session�

ğ�ĜĞĚěĤĚěĤ� ACL!2013Mċ�ð;3PF�



Grounded Language Learning from 
Video Described with Sentences�

Haonan!Yu!and!Jeffrey!Mark!Siskind!

(Best!Paper!Award,!ACL!2013)!

Ġ�ĜĞĚěĤĚěĤ� ACL!2013Mċ�ð;3PF�



ŞƊŰƉŪşŤƄƊ�

•  ²±:!9ëŉqGƒ^lĸŘ��ŉZÌ!

– 5¯ŅĻŉì��ĮŖ^lŉZÌ!

ġ�

1

3

2

0

The person to the left of the backpack carried the trash-can towards the chair.

↵
p
0

↵
p
0

�
p
1

↵
p
1

↵
p
0

�
p
2

↵
p
2

↵
p
0

�
p
3

↵
p
3

Track 3 Track 0 Track 1 Track 2

Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(↵ and possibly �), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7! Track 3, p1 7! Track 0, p2 7! Track 1,
and p3 7! Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1, . . . ,M}, letting m

denote a lexical entry. We are given a sequence
D = (D1, . . . , DR) of video clips Dr, each
paired with a sentence Sr from a sequence S =

(S1, . . . , SR) of sentences. We refer to Dr paired
with Sr as a training sample. Each sentence Sr is
a sequence (Sr,1, . . . , Sr,Lr) of words Sr,l, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S1,3 = S4,2. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(⌧r,1, . . . , ⌧r,Ur) of object tracks ⌧r,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7! ⌧r,39

and pr,1 7! ⌧r,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(⌧r,39), chair(⌧r,51), and
approached(⌧r,39, ⌧r,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set D

t
r of detections. Since our object detector

is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections D

t in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from D

t in frame t that is selected to
form the track. The object detector scores each
detection. Let F (D

t
, j

t
) denote that score. More-
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Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(↵ and possibly �), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7! Track 3, p1 7! Track 0, p2 7! Track 1,
and p3 7! Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1, . . . ,M}, letting m

denote a lexical entry. We are given a sequence
D = (D1, . . . , DR) of video clips Dr, each
paired with a sentence Sr from a sequence S =

(S1, . . . , SR) of sentences. We refer to Dr paired
with Sr as a training sample. Each sentence Sr is
a sequence (Sr,1, . . . , Sr,Lr) of words Sr,l, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S1,3 = S4,2. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(⌧r,1, . . . , ⌧r,Ur) of object tracks ⌧r,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7! ⌧r,39

and pr,1 7! ⌧r,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(⌧r,39), chair(⌧r,51), and
approached(⌧r,39, ⌧r,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set D

t
r of detections. Since our object detector

is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections D

t in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from D

t in frame t that is selected to
form the track. The object detector scores each
detection. Let F (D

t
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) denote that score. More-
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Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(↵ and possibly �), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7! Track 3, p1 7! Track 0, p2 7! Track 1,
and p3 7! Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1, . . . ,M}, letting m

denote a lexical entry. We are given a sequence
D = (D1, . . . , DR) of video clips Dr, each
paired with a sentence Sr from a sequence S =

(S1, . . . , SR) of sentences. We refer to Dr paired
with Sr as a training sample. Each sentence Sr is
a sequence (Sr,1, . . . , Sr,Lr) of words Sr,l, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S1,3 = S4,2. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(⌧r,1, . . . , ⌧r,Ur) of object tracks ⌧r,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7! ⌧r,39

and pr,1 7! ⌧r,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(⌧r,39), chair(⌧r,51), and
approached(⌧r,39, ⌧r,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set D

t
r of detections. Since our object detector

is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections D

t in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from D

t in frame t that is selected to
form the track. The object detector scores each
detection. Let F (D

t
, j

t
) denote that score. More-
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Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(↵ and possibly �), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7! Track 3, p1 7! Track 0, p2 7! Track 1,
and p3 7! Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1, . . . ,M}, letting m

denote a lexical entry. We are given a sequence
D = (D1, . . . , DR) of video clips Dr, each
paired with a sentence Sr from a sequence S =

(S1, . . . , SR) of sentences. We refer to Dr paired
with Sr as a training sample. Each sentence Sr is
a sequence (Sr,1, . . . , Sr,Lr) of words Sr,l, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S1,3 = S4,2. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(⌧r,1, . . . , ⌧r,Ur) of object tracks ⌧r,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7! ⌧r,39

and pr,1 7! ⌧r,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(⌧r,39), chair(⌧r,51), and
approached(⌧r,39, ⌧r,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set D

t
r of detections. Since our object detector

is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections D

t in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from D

t in frame t that is selected to
form the track. The object detector scores each
detection. Let F (D

t
, j

t
) denote that score. More-
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Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(↵ and possibly �), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7! Track 3, p1 7! Track 0, p2 7! Track 1,
and p3 7! Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1, . . . ,M}, letting m

denote a lexical entry. We are given a sequence
D = (D1, . . . , DR) of video clips Dr, each
paired with a sentence Sr from a sequence S =

(S1, . . . , SR) of sentences. We refer to Dr paired
with Sr as a training sample. Each sentence Sr is
a sequence (Sr,1, . . . , Sr,Lr) of words Sr,l, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S1,3 = S4,2. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(⌧r,1, . . . , ⌧r,Ur) of object tracks ⌧r,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7! ⌧r,39

and pr,1 7! ⌧r,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(⌧r,39), chair(⌧r,51), and
approached(⌧r,39, ⌧r,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set D

t
r of detections. Since our object detector

is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections D

t in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from D

t in frame t that is selected to
form the track. The object detector scores each
detection. Let F (D
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) denote that score. More-
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Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(↵ and possibly �), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7! Track 3, p1 7! Track 0, p2 7! Track 1,
and p3 7! Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1, . . . ,M}, letting m

denote a lexical entry. We are given a sequence
D = (D1, . . . , DR) of video clips Dr, each
paired with a sentence Sr from a sequence S =

(S1, . . . , SR) of sentences. We refer to Dr paired
with Sr as a training sample. Each sentence Sr is
a sequence (Sr,1, . . . , Sr,Lr) of words Sr,l, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S1,3 = S4,2. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(⌧r,1, . . . , ⌧r,Ur) of object tracks ⌧r,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7! ⌧r,39

and pr,1 7! ⌧r,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(⌧r,39), chair(⌧r,51), and
approached(⌧r,39, ⌧r,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set D

t
r of detections. Since our object detector

is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections D

t in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from D

t in frame t that is selected to
form the track. The object detector scores each
detection. Let F (D

t
, j

t
) denote that score. More-

56

The person to the left of the backpack carried the trash-can towards the chair.�
p0� p0� p3� p3�

Track0�Track2� Track3� Track1�
ĜĞĚěĤĚěĤ� ACL!2013Mċ�ð;3PF�



\ċňŊ�

•  9ëŉĒƎparticipantƏŅ5¯&ŉ^ñŅĸ
Ř¥�ƎobjectƏŅŉ^l�ĳŜZÌ�

Ĝĝ�

p1�p1�p0� p0� p2� p2�

1

3

2

0

The person to the left of the backpack carried the trash-can towards the chair.

↵
p
0

↵
p
0

�
p
1

↵
p
1

↵
p
0

�
p
2

↵
p
2

↵
p
0

�
p
3

↵
p
3

Track 3 Track 0 Track 1 Track 2

Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(↵ and possibly �), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7! Track 3, p1 7! Track 0, p2 7! Track 1,
and p3 7! Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1, . . . ,M}, letting m

denote a lexical entry. We are given a sequence
D = (D1, . . . , DR) of video clips Dr, each
paired with a sentence Sr from a sequence S =

(S1, . . . , SR) of sentences. We refer to Dr paired
with Sr as a training sample. Each sentence Sr is
a sequence (Sr,1, . . . , Sr,Lr) of words Sr,l, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S1,3 = S4,2. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(⌧r,1, . . . , ⌧r,Ur) of object tracks ⌧r,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7! ⌧r,39

and pr,1 7! ⌧r,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(⌧r,39), chair(⌧r,51), and
approached(⌧r,39, ⌧r,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set D

t
r of detections. Since our object detector

is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections D

t in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from D

t in frame t that is selected to
form the track. The object detector scores each
detection. Let F (D

t
, j

t
) denote that score. More-
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Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(↵ and possibly �), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7! Track 3, p1 7! Track 0, p2 7! Track 1,
and p3 7! Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1, . . . ,M}, letting m

denote a lexical entry. We are given a sequence
D = (D1, . . . , DR) of video clips Dr, each
paired with a sentence Sr from a sequence S =

(S1, . . . , SR) of sentences. We refer to Dr paired
with Sr as a training sample. Each sentence Sr is
a sequence (Sr,1, . . . , Sr,Lr) of words Sr,l, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S1,3 = S4,2. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(⌧r,1, . . . , ⌧r,Ur) of object tracks ⌧r,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7! ⌧r,39

and pr,1 7! ⌧r,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(⌧r,39), chair(⌧r,51), and
approached(⌧r,39, ⌧r,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set D

t
r of detections. Since our object detector

is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections D

t in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from D

t in frame t that is selected to
form the track. The object detector scores each
detection. Let F (D

t
, j

t
) denote that score. More-
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Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(↵ and possibly �), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7! Track 3, p1 7! Track 0, p2 7! Track 1,
and p3 7! Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1, . . . ,M}, letting m

denote a lexical entry. We are given a sequence
D = (D1, . . . , DR) of video clips Dr, each
paired with a sentence Sr from a sequence S =

(S1, . . . , SR) of sentences. We refer to Dr paired
with Sr as a training sample. Each sentence Sr is
a sequence (Sr,1, . . . , Sr,Lr) of words Sr,l, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S1,3 = S4,2. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(⌧r,1, . . . , ⌧r,Ur) of object tracks ⌧r,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7! ⌧r,39

and pr,1 7! ⌧r,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(⌧r,39), chair(⌧r,51), and
approached(⌧r,39, ⌧r,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set D

t
r of detections. Since our object detector

is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections D

t in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from D

t in frame t that is selected to
form the track. The object detector scores each
detection. Let F (D

t
, j

t
) denote that score. More-
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Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(↵ and possibly �), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7! Track 3, p1 7! Track 0, p2 7! Track 1,
and p3 7! Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1, . . . ,M}, letting m

denote a lexical entry. We are given a sequence
D = (D1, . . . , DR) of video clips Dr, each
paired with a sentence Sr from a sequence S =

(S1, . . . , SR) of sentences. We refer to Dr paired
with Sr as a training sample. Each sentence Sr is
a sequence (Sr,1, . . . , Sr,Lr) of words Sr,l, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S1,3 = S4,2. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(⌧r,1, . . . , ⌧r,Ur) of object tracks ⌧r,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7! ⌧r,39

and pr,1 7! ⌧r,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(⌧r,39), chair(⌧r,51), and
approached(⌧r,39, ⌧r,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set D

t
r of detections. Since our object detector

is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections D

t in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from D

t in frame t that is selected to
form the track. The object detector scores each
detection. Let F (D

t
, j

t
) denote that score. More-
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Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(↵ and possibly �), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7! Track 3, p1 7! Track 0, p2 7! Track 1,
and p3 7! Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation

Throughout this paper, lowercase letters are used
for variables or hidden quantities while uppercase
ones are used for constants or observed quantities.

We are given a lexicon {1, . . . ,M}, letting m

denote a lexical entry. We are given a sequence
D = (D1, . . . , DR) of video clips Dr, each
paired with a sentence Sr from a sequence S =

(S1, . . . , SR) of sentences. We refer to Dr paired
with Sr as a training sample. Each sentence Sr is
a sequence (Sr,1, . . . , Sr,Lr) of words Sr,l, each an
entry from the lexicon. A given entry may poten-
tially appear in multiple sentences and even mul-
tiple times in a given sentence. For example, the
third word in the first sentence might be the same
entry as the second word in the fourth sentence,
in which case S1,3 = S4,2. This is what allows
cross-situational learning in our algorithm.

Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(⌧r,1, . . . , ⌧r,Ur) of object tracks ⌧r,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7! ⌧r,39

and pr,1 7! ⌧r,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(⌧r,39), chair(⌧r,51), and
approached(⌧r,39, ⌧r,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set D

t
r of detections. Since our object detector

is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections D

t in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from D

t in frame t that is selected to
form the track. The object detector scores each
detection. Let F (D

t
, j

t
) denote that score. More-
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Figure 1: An illustration of our problem. Each
word in the sentence has one or more arguments
(↵ and possibly �), each argument of each word is
assigned to a participant (p0, . . . , p3) in the event
described by the sentence, and each participant
can be assigned to any object track in the video.
This figure shows a possible (but erroneous) in-
terpretation of the sentence where the mapping is:
p0 7! Track 3, p1 7! Track 0, p2 7! Track 1,
and p3 7! Track 2, which might (incorrectly) lead
the learner to conclude that the word person maps
to the backpack, the word backpack maps to the
chair, the word trash-can maps to the trash-can,
and the word chair maps to the person.

2 General Problem Formulation
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ones are used for constants or observed quantities.
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Let us assume, for a moment, that we can
process each video clip Dr to yield a sequence
(⌧r,1, . . . , ⌧r,Ur) of object tracks ⌧r,u. Let us
also assume that Dr is paired with a sen-

tence Sr = The person approached the chair,
specified to have two participants, pr,0 and pr,1,
with the mapping person(pr,0), chair(pr,1), and
approached(pr,0, pr,1). Let us further assume, for
a moment, that we are given a mapping from
participants to object tracks, say pr,0 7! ⌧r,39

and pr,1 7! ⌧r,51. This would allow us to
instantiate the HMMs with object tracks for a
given video clip: person(⌧r,39), chair(⌧r,51), and
approached(⌧r,39, ⌧r,51). Let us further assume
that we can score each such instantiated HMM and
aggregate the scores for all of the words in a sen-
tence to yield a sentence score and further aggre-
gate the scores for all of the sentences in the cor-
pus to yield a corpus score. However, we don’t
know the parameters of the HMMs. These con-
stitute the unknown meanings of the words in our
corpus which we wish to learn. The problem is
to simultaneously determine (a) those parameters
along with (b) the object tracks and (c) the map-
ping from participants to object tracks. We do this
by finding (a)–(c) that maximizes the corpus score.

3 The Sentence Tracker

Barbu et al. (2012a) presented a method that first
determines object tracks from a single video clip
and then uses these fixed tracks with HMMs to
recognize actions corresponding to verbs and con-
struct sentential descriptions with templates. Later
Barbu et al. (2012b) addressed the problem of
solving (b) and (c), for a single object track con-
strained by a single intransitive verb, without solv-
ing (a), in the context of a single video clip. Our
group has generalized this work to yield an algo-
rithm called the sentence tracker which operates
by way of a factorial HMM framework. We intro-
duce that here as the foundation of our extension.

Each video clip Dr contains Tr frames. We
run an object detector on each frame to yield a
set D

t
r of detections. Since our object detector

is unreliable, we bias it to have high recall but
low precision, yielding multiple detections in each
frame. We form an object track by selecting a sin-
gle detection for that track for each frame. For a
moment, let us consider a single video clip with
length T , with detections D

t in frame t. Further,
let us assume that we seek a single object track
in that video clip. Let jt denote the index of the
detection from D

t in frame t that is selected to
form the track. The object detector scores each
detection. Let F (D
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, j
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) denote that score. More-
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over, we wish the track to be temporally coherent;
we want the objects in a track to move smoothly
over time and not jump around the field of view.
Let G(D

t�1
, j

t�1
, D

t
, j

t
) denote some measure

of coherence between two detections in adjacent
frames. (One possible such measure is consistency
of the displacement of Dt relative to D

t�1 with the
velocity of Dt�1 computed from the image by op-
tical flow.) One can select the detections to yield a
track that maximizes both the aggregate detection
score and the aggregate temporal coherence score.

max
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CCCCA
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This can be determined with the Viterbi (1967) al-
gorithm and is known as detection-based tracking

(Viterbi, 1971).
Recall that we model the meaning of an in-

transitive verb as an HMM over a time series
of features extracted for its participant in each
frame. Let � denote the parameters of this HMM,
(q

1
, . . . , q

T
) denote the sequence of states qt that

leads to an observed track, B(D

t
, j

t
, q

t
,�) de-

note the conditional log probability of observ-
ing the feature vector associated with the detec-
tion selected by j

t among the detections D

t in
frame t, given that the HMM is in state q

t, and
A(q

t�1
, q

t
,�) denote the log transition probabil-

ity of the HMM. For a given track (j

1
, . . . , j

T
),

the state sequence that yields the maximal likeli-
hood is given by:

max
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1

CCCCA
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which can also be found by the Viterbi algorithm.
A given video clip may depict multiple objects,

each moving along its own trajectory. There may
be both a person jumping and a ball rolling. How
are we to select one track over the other? The key
insight of the sentence tracker is to bias the selec-
tion of a track so that it matches an HMM. This is
done by combining the cost function of Eq. 1 with
the cost function of Eq. 2 to yield Eq. 3, which can
also be determined using the Viterbi algorithm.
This is done by forming the cross product of the

two lattices. This jointly selects the optimal detec-
tions to form the track, together with the optimal
state sequence, and scores that combination.
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CCCCCA
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While we formulated the above around a sin-
gle track and a word that contains a single partic-
ipant, it is straightforward to extend this so that it
supports multiple tracks and words of higher ar-
ity by forming a larger cross product. When doing
so, we generalize j

t to denote a sequence of de-
tections from D

t, one for each of the tracks. We
further need to generalize F so that it computes
the joint score of a sequence of detections, one for
each track, G so that it computes the joint mea-
sure of coherence between a sequence of pairs of
detections in two adjacent frames, and B so that
it computes the joint conditional log probability
of observing the feature vectors associated with
the sequence of detections selected by j

t. When
doing this, note that Eqs. 1 and 3 maximize over
j

1
, . . . , j

T which denotes T sequences of detec-
tion indices, rather than T individual indices.

It is further straightforward to extend the above
to support a sequence (S1, . . . , SL) of words Sl

denoting a sentence, each of which applies to dif-
ferent subsets of the multiple tracks, again by
forming a larger cross product. When doing so, we
generalize q

t to denote a sequence (q

t
1, . . . , q

t
L) of

states qtl , one for each word l in the sentence, and
use ql to denote the sequence (q

1
l , . . . , q

T
l ) and q

to denote the sequence (q1, . . . , qL). We further
need to generalize B so that it computes the joint
conditional log probability of observing the fea-
ture vectors for the detections in the tracks that are
assigned to the arguments of the HMM for each
word in the sentence and A so that it computes the
joint log transition probability for the HMMs for
all words in the sentence. This allows selection
of an optimal sequence of tracks that yields the
highest score for the sentential meaning of a se-
quence of words. Modeling the meaning of a sen-
tence through a sequence of words whose mean-
ings are modeled by HMMs, defines a factorial

HMM for that sentence, since the overall Markov
process for that sentence can be factored into inde-
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over, we wish the track to be temporally coherent;
we want the objects in a track to move smoothly
over time and not jump around the field of view.
Let G(D

t�1
, j

t�1
, D

t
, j

t
) denote some measure

of coherence between two detections in adjacent
frames. (One possible such measure is consistency
of the displacement of Dt relative to D

t�1 with the
velocity of Dt�1 computed from the image by op-
tical flow.) One can select the detections to yield a
track that maximizes both the aggregate detection
score and the aggregate temporal coherence score.
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(Viterbi, 1971).
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which can also be found by the Viterbi algorithm.
A given video clip may depict multiple objects,

each moving along its own trajectory. There may
be both a person jumping and a ball rolling. How
are we to select one track over the other? The key
insight of the sentence tracker is to bias the selec-
tion of a track so that it matches an HMM. This is
done by combining the cost function of Eq. 1 with
the cost function of Eq. 2 to yield Eq. 3, which can
also be determined using the Viterbi algorithm.
This is done by forming the cross product of the

two lattices. This jointly selects the optimal detec-
tions to form the track, together with the optimal
state sequence, and scores that combination.
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While we formulated the above around a sin-
gle track and a word that contains a single partic-
ipant, it is straightforward to extend this so that it
supports multiple tracks and words of higher ar-
ity by forming a larger cross product. When doing
so, we generalize j

t to denote a sequence of de-
tections from D

t, one for each of the tracks. We
further need to generalize F so that it computes
the joint score of a sequence of detections, one for
each track, G so that it computes the joint mea-
sure of coherence between a sequence of pairs of
detections in two adjacent frames, and B so that
it computes the joint conditional log probability
of observing the feature vectors associated with
the sequence of detections selected by j

t. When
doing this, note that Eqs. 1 and 3 maximize over
j

1
, . . . , j

T which denotes T sequences of detec-
tion indices, rather than T individual indices.

It is further straightforward to extend the above
to support a sequence (S1, . . . , SL) of words Sl

denoting a sentence, each of which applies to dif-
ferent subsets of the multiple tracks, again by
forming a larger cross product. When doing so, we
generalize q

t to denote a sequence (q

t
1, . . . , q

t
L) of

states qtl , one for each word l in the sentence, and
use ql to denote the sequence (q

1
l , . . . , q

T
l ) and q

to denote the sequence (q1, . . . , qL). We further
need to generalize B so that it computes the joint
conditional log probability of observing the fea-
ture vectors for the detections in the tracks that are
assigned to the arguments of the HMM for each
word in the sentence and A so that it computes the
joint log transition probability for the HMMs for
all words in the sentence. This allows selection
of an optimal sequence of tracks that yields the
highest score for the sentential meaning of a se-
quence of words. Modeling the meaning of a sen-
tence through a sequence of words whose mean-
ings are modeled by HMMs, defines a factorial

HMM for that sentence, since the overall Markov
process for that sentence can be factored into inde-
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over, we wish the track to be temporally coherent;
we want the objects in a track to move smoothly
over time and not jump around the field of view.
Let G(D
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) denote some measure

of coherence between two detections in adjacent
frames. (One possible such measure is consistency
of the displacement of Dt relative to D

t�1 with the
velocity of Dt�1 computed from the image by op-
tical flow.) One can select the detections to yield a
track that maximizes both the aggregate detection
score and the aggregate temporal coherence score.
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This can be determined with the Viterbi (1967) al-
gorithm and is known as detection-based tracking

(Viterbi, 1971).
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which can also be found by the Viterbi algorithm.
A given video clip may depict multiple objects,

each moving along its own trajectory. There may
be both a person jumping and a ball rolling. How
are we to select one track over the other? The key
insight of the sentence tracker is to bias the selec-
tion of a track so that it matches an HMM. This is
done by combining the cost function of Eq. 1 with
the cost function of Eq. 2 to yield Eq. 3, which can
also be determined using the Viterbi algorithm.
This is done by forming the cross product of the

two lattices. This jointly selects the optimal detec-
tions to form the track, together with the optimal
state sequence, and scores that combination.
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While we formulated the above around a sin-
gle track and a word that contains a single partic-
ipant, it is straightforward to extend this so that it
supports multiple tracks and words of higher ar-
ity by forming a larger cross product. When doing
so, we generalize j

t to denote a sequence of de-
tections from D

t, one for each of the tracks. We
further need to generalize F so that it computes
the joint score of a sequence of detections, one for
each track, G so that it computes the joint mea-
sure of coherence between a sequence of pairs of
detections in two adjacent frames, and B so that
it computes the joint conditional log probability
of observing the feature vectors associated with
the sequence of detections selected by j

t. When
doing this, note that Eqs. 1 and 3 maximize over
j
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, . . . , j

T which denotes T sequences of detec-
tion indices, rather than T individual indices.

It is further straightforward to extend the above
to support a sequence (S1, . . . , SL) of words Sl

denoting a sentence, each of which applies to dif-
ferent subsets of the multiple tracks, again by
forming a larger cross product. When doing so, we
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to denote the sequence (q1, . . . , qL). We further
need to generalize B so that it computes the joint
conditional log probability of observing the fea-
ture vectors for the detections in the tracks that are
assigned to the arguments of the HMM for each
word in the sentence and A so that it computes the
joint log transition probability for the HMMs for
all words in the sentence. This allows selection
of an optimal sequence of tracks that yields the
highest score for the sentential meaning of a se-
quence of words. Modeling the meaning of a sen-
tence through a sequence of words whose mean-
ings are modeled by HMMs, defines a factorial

HMM for that sentence, since the overall Markov
process for that sentence can be factored into inde-
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over, we wish the track to be temporally coherent;
we want the objects in a track to move smoothly
over time and not jump around the field of view.
Let G(D

t�1
, j

t�1
, D

t
, j

t
) denote some measure

of coherence between two detections in adjacent
frames. (One possible such measure is consistency
of the displacement of Dt relative to D

t�1 with the
velocity of Dt�1 computed from the image by op-
tical flow.) One can select the detections to yield a
track that maximizes both the aggregate detection
score and the aggregate temporal coherence score.

max

j1,...,jT

0

BBBB@

TX

t=1

F (D

t
, j

t
)

+

TX

t=2

G(D

t�1
, j

t�1
, D

t
, j

t
)

1

CCCCA
(1)

This can be determined with the Viterbi (1967) al-
gorithm and is known as detection-based tracking

(Viterbi, 1971).
Recall that we model the meaning of an in-

transitive verb as an HMM over a time series
of features extracted for its participant in each
frame. Let � denote the parameters of this HMM,
(q

1
, . . . , q

T
) denote the sequence of states qt that

leads to an observed track, B(D

t
, j

t
, q

t
,�) de-

note the conditional log probability of observ-
ing the feature vector associated with the detec-
tion selected by j

t among the detections D

t in
frame t, given that the HMM is in state q

t, and
A(q

t�1
, q

t
,�) denote the log transition probabil-

ity of the HMM. For a given track (j

1
, . . . , j

T
),

the state sequence that yields the maximal likeli-
hood is given by:

max

q1,...,qT

0

BBBB@

TX

t=1

B(D

t
, j

t
, q

t
,�)

+

TX

t=2

A(q

t�1
, q

t
,�)

1

CCCCA
(2)

which can also be found by the Viterbi algorithm.
A given video clip may depict multiple objects,

each moving along its own trajectory. There may
be both a person jumping and a ball rolling. How
are we to select one track over the other? The key
insight of the sentence tracker is to bias the selec-
tion of a track so that it matches an HMM. This is
done by combining the cost function of Eq. 1 with
the cost function of Eq. 2 to yield Eq. 3, which can
also be determined using the Viterbi algorithm.
This is done by forming the cross product of the

two lattices. This jointly selects the optimal detec-
tions to form the track, together with the optimal
state sequence, and scores that combination.

max

j1,...,jT

q1,...,qT

0

BBBBB@

TX

t=1

F (D

t
, j

t
)

+B(D

t
, j

t
, q

t
,�)

+

TX

t=2

G(D

t�1
, j

t�1
, D

t
, j

t
)

+A(q

t�1
, q

t
,�)

1

CCCCCA
(3)

While we formulated the above around a sin-
gle track and a word that contains a single partic-
ipant, it is straightforward to extend this so that it
supports multiple tracks and words of higher ar-
ity by forming a larger cross product. When doing
so, we generalize j

t to denote a sequence of de-
tections from D

t, one for each of the tracks. We
further need to generalize F so that it computes
the joint score of a sequence of detections, one for
each track, G so that it computes the joint mea-
sure of coherence between a sequence of pairs of
detections in two adjacent frames, and B so that
it computes the joint conditional log probability
of observing the feature vectors associated with
the sequence of detections selected by j

t. When
doing this, note that Eqs. 1 and 3 maximize over
j

1
, . . . , j

T which denotes T sequences of detec-
tion indices, rather than T individual indices.

It is further straightforward to extend the above
to support a sequence (S1, . . . , SL) of words Sl

denoting a sentence, each of which applies to dif-
ferent subsets of the multiple tracks, again by
forming a larger cross product. When doing so, we
generalize q

t to denote a sequence (q

t
1, . . . , q

t
L) of

states qtl , one for each word l in the sentence, and
use ql to denote the sequence (q

1
l , . . . , q

T
l ) and q

to denote the sequence (q1, . . . , qL). We further
need to generalize B so that it computes the joint
conditional log probability of observing the fea-
ture vectors for the detections in the tracks that are
assigned to the arguments of the HMM for each
word in the sentence and A so that it computes the
joint log transition probability for the HMMs for
all words in the sentence. This allows selection
of an optimal sequence of tracks that yields the
highest score for the sentential meaning of a se-
quence of words. Modeling the meaning of a sen-
tence through a sequence of words whose mean-
ings are modeled by HMMs, defines a factorial

HMM for that sentence, since the overall Markov
process for that sentence can be factored into inde-
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over, we wish the track to be temporally coherent;
we want the objects in a track to move smoothly
over time and not jump around the field of view.
Let G(D

t�1
, j

t�1
, D

t
, j

t
) denote some measure

of coherence between two detections in adjacent
frames. (One possible such measure is consistency
of the displacement of Dt relative to D

t�1 with the
velocity of Dt�1 computed from the image by op-
tical flow.) One can select the detections to yield a
track that maximizes both the aggregate detection
score and the aggregate temporal coherence score.

max

j1,...,jT

0

BBBB@

TX

t=1

F (D

t
, j

t
)

+

TX

t=2

G(D

t�1
, j

t�1
, D

t
, j

t
)

1

CCCCA
(1)

This can be determined with the Viterbi (1967) al-
gorithm and is known as detection-based tracking

(Viterbi, 1971).
Recall that we model the meaning of an in-

transitive verb as an HMM over a time series
of features extracted for its participant in each
frame. Let � denote the parameters of this HMM,
(q

1
, . . . , q

T
) denote the sequence of states qt that

leads to an observed track, B(D

t
, j

t
, q

t
,�) de-

note the conditional log probability of observ-
ing the feature vector associated with the detec-
tion selected by j

t among the detections D

t in
frame t, given that the HMM is in state q

t, and
A(q

t�1
, q

t
,�) denote the log transition probabil-

ity of the HMM. For a given track (j

1
, . . . , j

T
),

the state sequence that yields the maximal likeli-
hood is given by:

max

q1,...,qT

0

BBBB@

TX

t=1

B(D

t
, j

t
, q

t
,�)

+

TX

t=2

A(q

t�1
, q

t
,�)

1

CCCCA
(2)

which can also be found by the Viterbi algorithm.
A given video clip may depict multiple objects,

each moving along its own trajectory. There may
be both a person jumping and a ball rolling. How
are we to select one track over the other? The key
insight of the sentence tracker is to bias the selec-
tion of a track so that it matches an HMM. This is
done by combining the cost function of Eq. 1 with
the cost function of Eq. 2 to yield Eq. 3, which can
also be determined using the Viterbi algorithm.
This is done by forming the cross product of the

two lattices. This jointly selects the optimal detec-
tions to form the track, together with the optimal
state sequence, and scores that combination.

max

j1,...,jT

q1,...,qT

0

BBBBB@

TX

t=1

F (D

t
, j

t
)

+B(D

t
, j

t
, q

t
,�)

+

TX

t=2

G(D

t�1
, j

t�1
, D

t
, j

t
)

+A(q

t�1
, q

t
,�)

1

CCCCCA
(3)

While we formulated the above around a sin-
gle track and a word that contains a single partic-
ipant, it is straightforward to extend this so that it
supports multiple tracks and words of higher ar-
ity by forming a larger cross product. When doing
so, we generalize j

t to denote a sequence of de-
tections from D

t, one for each of the tracks. We
further need to generalize F so that it computes
the joint score of a sequence of detections, one for
each track, G so that it computes the joint mea-
sure of coherence between a sequence of pairs of
detections in two adjacent frames, and B so that
it computes the joint conditional log probability
of observing the feature vectors associated with
the sequence of detections selected by j

t. When
doing this, note that Eqs. 1 and 3 maximize over
j

1
, . . . , j

T which denotes T sequences of detec-
tion indices, rather than T individual indices.

It is further straightforward to extend the above
to support a sequence (S1, . . . , SL) of words Sl

denoting a sentence, each of which applies to dif-
ferent subsets of the multiple tracks, again by
forming a larger cross product. When doing so, we
generalize q

t to denote a sequence (q

t
1, . . . , q

t
L) of

states qtl , one for each word l in the sentence, and
use ql to denote the sequence (q

1
l , . . . , q

T
l ) and q

to denote the sequence (q1, . . . , qL). We further
need to generalize B so that it computes the joint
conditional log probability of observing the fea-
ture vectors for the detections in the tracks that are
assigned to the arguments of the HMM for each
word in the sentence and A so that it computes the
joint log transition probability for the HMMs for
all words in the sentence. This allows selection
of an optimal sequence of tracks that yields the
highest score for the sentential meaning of a se-
quence of words. Modeling the meaning of a sen-
tence through a sequence of words whose mean-
ings are modeled by HMMs, defines a factorial

HMM for that sentence, since the overall Markov
process for that sentence can be factored into inde-
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over, we wish the track to be temporally coherent;
we want the objects in a track to move smoothly
over time and not jump around the field of view.
Let G(D

t�1
, j

t�1
, D

t
, j

t
) denote some measure

of coherence between two detections in adjacent
frames. (One possible such measure is consistency
of the displacement of Dt relative to D

t�1 with the
velocity of Dt�1 computed from the image by op-
tical flow.) One can select the detections to yield a
track that maximizes both the aggregate detection
score and the aggregate temporal coherence score.

max

j1,...,jT

0

BBBB@

TX

t=1

F (D

t
, j

t
)

+

TX

t=2

G(D

t�1
, j

t�1
, D

t
, j

t
)

1

CCCCA
(1)

This can be determined with the Viterbi (1967) al-
gorithm and is known as detection-based tracking

(Viterbi, 1971).
Recall that we model the meaning of an in-

transitive verb as an HMM over a time series
of features extracted for its participant in each
frame. Let � denote the parameters of this HMM,
(q

1
, . . . , q

T
) denote the sequence of states qt that

leads to an observed track, B(D

t
, j

t
, q

t
,�) de-

note the conditional log probability of observ-
ing the feature vector associated with the detec-
tion selected by j

t among the detections D

t in
frame t, given that the HMM is in state q

t, and
A(q

t�1
, q

t
,�) denote the log transition probabil-

ity of the HMM. For a given track (j

1
, . . . , j

T
),

the state sequence that yields the maximal likeli-
hood is given by:

max

q1,...,qT

0

BBBB@

TX

t=1

B(D

t
, j

t
, q

t
,�)

+

TX

t=2

A(q

t�1
, q

t
,�)

1

CCCCA
(2)

which can also be found by the Viterbi algorithm.
A given video clip may depict multiple objects,

each moving along its own trajectory. There may
be both a person jumping and a ball rolling. How
are we to select one track over the other? The key
insight of the sentence tracker is to bias the selec-
tion of a track so that it matches an HMM. This is
done by combining the cost function of Eq. 1 with
the cost function of Eq. 2 to yield Eq. 3, which can
also be determined using the Viterbi algorithm.
This is done by forming the cross product of the

two lattices. This jointly selects the optimal detec-
tions to form the track, together with the optimal
state sequence, and scores that combination.

max

j1,...,jT

q1,...,qT

0

BBBBB@

TX

t=1

F (D

t
, j

t
)

+B(D

t
, j

t
, q

t
,�)

+

TX

t=2

G(D

t�1
, j

t�1
, D

t
, j

t
)

+A(q

t�1
, q

t
,�)

1

CCCCCA
(3)

While we formulated the above around a sin-
gle track and a word that contains a single partic-
ipant, it is straightforward to extend this so that it
supports multiple tracks and words of higher ar-
ity by forming a larger cross product. When doing
so, we generalize j

t to denote a sequence of de-
tections from D

t, one for each of the tracks. We
further need to generalize F so that it computes
the joint score of a sequence of detections, one for
each track, G so that it computes the joint mea-
sure of coherence between a sequence of pairs of
detections in two adjacent frames, and B so that
it computes the joint conditional log probability
of observing the feature vectors associated with
the sequence of detections selected by j

t. When
doing this, note that Eqs. 1 and 3 maximize over
j

1
, . . . , j

T which denotes T sequences of detec-
tion indices, rather than T individual indices.

It is further straightforward to extend the above
to support a sequence (S1, . . . , SL) of words Sl

denoting a sentence, each of which applies to dif-
ferent subsets of the multiple tracks, again by
forming a larger cross product. When doing so, we
generalize q

t to denote a sequence (q

t
1, . . . , q

t
L) of

states qtl , one for each word l in the sentence, and
use ql to denote the sequence (q

1
l , . . . , q

T
l ) and q

to denote the sequence (q1, . . . , qL). We further
need to generalize B so that it computes the joint
conditional log probability of observing the fea-
ture vectors for the detections in the tracks that are
assigned to the arguments of the HMM for each
word in the sentence and A so that it computes the
joint log transition probability for the HMMs for
all words in the sentence. This allows selection
of an optimal sequence of tracks that yields the
highest score for the sentential meaning of a se-
quence of words. Modeling the meaning of a sen-
tence through a sequence of words whose mean-
ings are modeled by HMMs, defines a factorial

HMM for that sentence, since the overall Markov
process for that sentence can be factored into inde-
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pendent component processes (Brand et al., 1997;
Zhong and Ghosh, 2001) for the individual words.
In this view, q denotes the state sequence for the
combined factorial HMM and ql denotes the factor
of that state sequence for word l. The remainder
of this paper wraps this sentence tracker in Baum
Welch (Baum et al., 1970; Baum, 1972).

4 Detailed Problem Formulation

We adapt the sentence tracker to training a cor-
pus of R video clips, each paired with a sentence.
Thus we augment our notation, generalizing j

t

to j

t
r and q

t
l to q

t
r,l. Below, we use jr to denote

(j

1
r , . . . , j

Tr
r ), j to denote (j1, . . . , jR), qr,l to de-

note (q

1
r,l, . . . , q

Tr
r,l ), qr to denote (qr,1, . . . , qr,Lr),

and q to denote (q1, . . . , qR).
We use discrete features, namely natural num-

bers, in our feature vectors, quantized by a binning
process. We assume the part of speech of entry m

is known as Cm. The length of the feature vector
may vary across parts of speech. Let Nc denote the
length of the feature vector for part of speech c,
xr,l denote the time-series (x

1
r,l, . . . , x

Tr
r,l) of fea-

ture vectors x

t
r,l, associated with Sr,l (which re-

call is some entry m), and xr denote the sequence
(xr,1, . . . , xr,Lr). We assume that we are given
a function �c(D

t
r, j

t
r) that computes the feature

vector xtr,l for the word Sr,l whose part of speech
is CSr,l = c. Note that we allow � to be depen-
dent on c allowing different features to be com-
puted for different parts of speech, since we can
determine m and thus Cm from Sr,l. We choose to
have Nc and �c depend on the part of speech c and
not on the entry m since doing so would be tanta-
mount to encoding the to-be-learned word mean-
ing in the provided feature-vector computation.

The goal of training is to find a sequence � =

(�1, . . . ,�M ) of parameters �m that best explains
the R training samples. The parameters �m con-
stitute the meaning of the entry m in the lexicon.
Collectively, these are the initial state probabili-
ties a

m
0,k, for 1  k  ICm , the transition prob-

abilities a

m
i,k, for 1  i, k  ICm , and the out-

put probabilities b

m
i,n(x), for 1  i  ICm and

1  n  NCm , where ICm denotes the number of
states in the HMM for entry m. Like before, we
could have a distinct Im for each entry m but in-
stead have ICm depend only on the part of speech
of entry m, and assume that we know the fixed I

for each part of speech. In our case, bmi,n is a dis-
crete distribution because the features are binned.

5 The Learning Algorithm

Instantiating the above approach requires a defini-
tion for what it means to best explain the R train-

ing samples. Towards this end, we define the score
of a video clip Dr paired with sentence Sr given
the parameter set � to characterize how well this
training sample is explained. While the cost func-
tion in Eq. 3 may qualify as a score, it is easier to
fit a likelihood calculation into the Baum-Welch
framework than a MAP estimate. Thus we replace
the max in Eq. 3 with a

P
and redefine our scor-

ing function as follows:

L(Dr;Sr,�) =
X

jr

P (jr|Dr)P (xr|Sr,�) (4)

The score in Eq. 4 can be interpreted as an ex-
pectation of the HMM likelihood over all possible
mappings from participants to all possible tracks.
By definition, P (jr|Dr) =

V (Dr,jr)P
j0r

V (Dr,j0r)
, where

the numerator is the score of a particular track se-
quence jr while the denominator sums the scores
over all possible track sequences. The log of the
numerator V (Dr, jr) is simply Eq. 1 without the
max. The log of the denominator can be com-
puted efficiently by the forward algorithm (Baum
and Petrie, 1966). The likelihood for a factorial
HMM can be computed as:

P (xr|Sr,�) =
X

qr

Y

l

P (xr,l, qr,l|Sr,l,�) (5)

i.e., summing the likelihoods for all possible state
sequences. Each summand is simply the joint like-
lihood for all the words in the sentence condi-
tioned on a state sequence qr. For HMMs we have

P (xr,l, qr,l|Sr,l,�) =
Y

t

a

Sr,l

qt�1
r,l ,qtr,lY

n

b

Sr,l

qtr,l,n
(x

t
r,l,n)

(6)

Finally, for a training corpus of R samples, we
seek to maximize the joint score:

L(D;S,�) =

Y

r

L(Dr;Sr,�) (7)

A local maximum can be found by employing
the Baum-Welch algorithm (Baum et al., 1970;
Baum, 1972). By constructing an auxiliary func-
tion (Bilmes, 1997), one can derive the reestima-
tion formulas in Eq. 8, where x

t
r,l,n = h denotes

the selection of all possible j

t
r such that the nth
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pendent component processes (Brand et al., 1997;
Zhong and Ghosh, 2001) for the individual words.
In this view, q denotes the state sequence for the
combined factorial HMM and ql denotes the factor
of that state sequence for word l. The remainder
of this paper wraps this sentence tracker in Baum
Welch (Baum et al., 1970; Baum, 1972).

4 Detailed Problem Formulation

We adapt the sentence tracker to training a cor-
pus of R video clips, each paired with a sentence.
Thus we augment our notation, generalizing j

t

to j

t
r and q

t
l to q

t
r,l. Below, we use jr to denote

(j

1
r , . . . , j

Tr
r ), j to denote (j1, . . . , jR), qr,l to de-

note (q

1
r,l, . . . , q

Tr
r,l ), qr to denote (qr,1, . . . , qr,Lr),

and q to denote (q1, . . . , qR).
We use discrete features, namely natural num-

bers, in our feature vectors, quantized by a binning
process. We assume the part of speech of entry m

is known as Cm. The length of the feature vector
may vary across parts of speech. Let Nc denote the
length of the feature vector for part of speech c,
xr,l denote the time-series (x

1
r,l, . . . , x

Tr
r,l) of fea-

ture vectors x

t
r,l, associated with Sr,l (which re-

call is some entry m), and xr denote the sequence
(xr,1, . . . , xr,Lr). We assume that we are given
a function �c(D

t
r, j

t
r) that computes the feature

vector xtr,l for the word Sr,l whose part of speech
is CSr,l = c. Note that we allow � to be depen-
dent on c allowing different features to be com-
puted for different parts of speech, since we can
determine m and thus Cm from Sr,l. We choose to
have Nc and �c depend on the part of speech c and
not on the entry m since doing so would be tanta-
mount to encoding the to-be-learned word mean-
ing in the provided feature-vector computation.

The goal of training is to find a sequence � =

(�1, . . . ,�M ) of parameters �m that best explains
the R training samples. The parameters �m con-
stitute the meaning of the entry m in the lexicon.
Collectively, these are the initial state probabili-
ties a

m
0,k, for 1  k  ICm , the transition prob-

abilities a

m
i,k, for 1  i, k  ICm , and the out-

put probabilities b

m
i,n(x), for 1  i  ICm and

1  n  NCm , where ICm denotes the number of
states in the HMM for entry m. Like before, we
could have a distinct Im for each entry m but in-
stead have ICm depend only on the part of speech
of entry m, and assume that we know the fixed I

for each part of speech. In our case, bmi,n is a dis-
crete distribution because the features are binned.

5 The Learning Algorithm

Instantiating the above approach requires a defini-
tion for what it means to best explain the R train-

ing samples. Towards this end, we define the score
of a video clip Dr paired with sentence Sr given
the parameter set � to characterize how well this
training sample is explained. While the cost func-
tion in Eq. 3 may qualify as a score, it is easier to
fit a likelihood calculation into the Baum-Welch
framework than a MAP estimate. Thus we replace
the max in Eq. 3 with a

P
and redefine our scor-

ing function as follows:

L(Dr;Sr,�) =
X

jr

P (jr|Dr)P (xr|Sr,�) (4)

The score in Eq. 4 can be interpreted as an ex-
pectation of the HMM likelihood over all possible
mappings from participants to all possible tracks.
By definition, P (jr|Dr) =

V (Dr,jr)P
j0r

V (Dr,j0r)
, where

the numerator is the score of a particular track se-
quence jr while the denominator sums the scores
over all possible track sequences. The log of the
numerator V (Dr, jr) is simply Eq. 1 without the
max. The log of the denominator can be com-
puted efficiently by the forward algorithm (Baum
and Petrie, 1966). The likelihood for a factorial
HMM can be computed as:

P (xr|Sr,�) =
X

qr

Y

l

P (xr,l, qr,l|Sr,l,�) (5)

i.e., summing the likelihoods for all possible state
sequences. Each summand is simply the joint like-
lihood for all the words in the sentence condi-
tioned on a state sequence qr. For HMMs we have

P (xr,l, qr,l|Sr,l,�) =
Y

t

a

Sr,l

qt�1
r,l ,qtr,lY

n

b

Sr,l

qtr,l,n
(x

t
r,l,n)

(6)

Finally, for a training corpus of R samples, we
seek to maximize the joint score:

L(D;S,�) =

Y

r

L(Dr;Sr,�) (7)

A local maximum can be found by employing
the Baum-Welch algorithm (Baum et al., 1970;
Baum, 1972). By constructing an auxiliary func-
tion (Bilmes, 1997), one can derive the reestima-
tion formulas in Eq. 8, where x

t
r,l,n = h denotes

the selection of all possible j

t
r such that the nth
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over, we wish the track to be temporally coherent;
we want the objects in a track to move smoothly
over time and not jump around the field of view.
Let G(D

t�1
, j

t�1
, D

t
, j

t
) denote some measure

of coherence between two detections in adjacent
frames. (One possible such measure is consistency
of the displacement of Dt relative to D

t�1 with the
velocity of Dt�1 computed from the image by op-
tical flow.) One can select the detections to yield a
track that maximizes both the aggregate detection
score and the aggregate temporal coherence score.
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This can be determined with the Viterbi (1967) al-
gorithm and is known as detection-based tracking

(Viterbi, 1971).
Recall that we model the meaning of an in-

transitive verb as an HMM over a time series
of features extracted for its participant in each
frame. Let � denote the parameters of this HMM,
(q

1
, . . . , q

T
) denote the sequence of states qt that

leads to an observed track, B(D

t
, j

t
, q

t
,�) de-

note the conditional log probability of observ-
ing the feature vector associated with the detec-
tion selected by j

t among the detections D

t in
frame t, given that the HMM is in state q

t, and
A(q

t�1
, q

t
,�) denote the log transition probabil-

ity of the HMM. For a given track (j

1
, . . . , j

T
),

the state sequence that yields the maximal likeli-
hood is given by:
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which can also be found by the Viterbi algorithm.
A given video clip may depict multiple objects,

each moving along its own trajectory. There may
be both a person jumping and a ball rolling. How
are we to select one track over the other? The key
insight of the sentence tracker is to bias the selec-
tion of a track so that it matches an HMM. This is
done by combining the cost function of Eq. 1 with
the cost function of Eq. 2 to yield Eq. 3, which can
also be determined using the Viterbi algorithm.
This is done by forming the cross product of the

two lattices. This jointly selects the optimal detec-
tions to form the track, together with the optimal
state sequence, and scores that combination.
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While we formulated the above around a sin-
gle track and a word that contains a single partic-
ipant, it is straightforward to extend this so that it
supports multiple tracks and words of higher ar-
ity by forming a larger cross product. When doing
so, we generalize j

t to denote a sequence of de-
tections from D

t, one for each of the tracks. We
further need to generalize F so that it computes
the joint score of a sequence of detections, one for
each track, G so that it computes the joint mea-
sure of coherence between a sequence of pairs of
detections in two adjacent frames, and B so that
it computes the joint conditional log probability
of observing the feature vectors associated with
the sequence of detections selected by j

t. When
doing this, note that Eqs. 1 and 3 maximize over
j

1
, . . . , j

T which denotes T sequences of detec-
tion indices, rather than T individual indices.

It is further straightforward to extend the above
to support a sequence (S1, . . . , SL) of words Sl

denoting a sentence, each of which applies to dif-
ferent subsets of the multiple tracks, again by
forming a larger cross product. When doing so, we
generalize q

t to denote a sequence (q

t
1, . . . , q

t
L) of

states qtl , one for each word l in the sentence, and
use ql to denote the sequence (q

1
l , . . . , q

T
l ) and q

to denote the sequence (q1, . . . , qL). We further
need to generalize B so that it computes the joint
conditional log probability of observing the fea-
ture vectors for the detections in the tracks that are
assigned to the arguments of the HMM for each
word in the sentence and A so that it computes the
joint log transition probability for the HMMs for
all words in the sentence. This allows selection
of an optimal sequence of tracks that yields the
highest score for the sentential meaning of a se-
quence of words. Modeling the meaning of a sen-
tence through a sequence of words whose mean-
ings are modeled by HMMs, defines a factorial

HMM for that sentence, since the overall Markov
process for that sentence can be factored into inde-

57

over, we wish the track to be temporally coherent;
we want the objects in a track to move smoothly
over time and not jump around the field of view.
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of the displacement of Dt relative to D
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This can be determined with the Viterbi (1967) al-
gorithm and is known as detection-based tracking

(Viterbi, 1971).
Recall that we model the meaning of an in-

transitive verb as an HMM over a time series
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which can also be found by the Viterbi algorithm.
A given video clip may depict multiple objects,

each moving along its own trajectory. There may
be both a person jumping and a ball rolling. How
are we to select one track over the other? The key
insight of the sentence tracker is to bias the selec-
tion of a track so that it matches an HMM. This is
done by combining the cost function of Eq. 1 with
the cost function of Eq. 2 to yield Eq. 3, which can
also be determined using the Viterbi algorithm.
This is done by forming the cross product of the

two lattices. This jointly selects the optimal detec-
tions to form the track, together with the optimal
state sequence, and scores that combination.
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While we formulated the above around a sin-
gle track and a word that contains a single partic-
ipant, it is straightforward to extend this so that it
supports multiple tracks and words of higher ar-
ity by forming a larger cross product. When doing
so, we generalize j

t to denote a sequence of de-
tections from D

t, one for each of the tracks. We
further need to generalize F so that it computes
the joint score of a sequence of detections, one for
each track, G so that it computes the joint mea-
sure of coherence between a sequence of pairs of
detections in two adjacent frames, and B so that
it computes the joint conditional log probability
of observing the feature vectors associated with
the sequence of detections selected by j

t. When
doing this, note that Eqs. 1 and 3 maximize over
j

1
, . . . , j

T which denotes T sequences of detec-
tion indices, rather than T individual indices.

It is further straightforward to extend the above
to support a sequence (S1, . . . , SL) of words Sl

denoting a sentence, each of which applies to dif-
ferent subsets of the multiple tracks, again by
forming a larger cross product. When doing so, we
generalize q

t to denote a sequence (q

t
1, . . . , q

t
L) of

states qtl , one for each word l in the sentence, and
use ql to denote the sequence (q

1
l , . . . , q

T
l ) and q

to denote the sequence (q1, . . . , qL). We further
need to generalize B so that it computes the joint
conditional log probability of observing the fea-
ture vectors for the detections in the tracks that are
assigned to the arguments of the HMM for each
word in the sentence and A so that it computes the
joint log transition probability for the HMMs for
all words in the sentence. This allows selection
of an optimal sequence of tracks that yields the
highest score for the sentential meaning of a se-
quence of words. Modeling the meaning of a sen-
tence through a sequence of words whose mean-
ings are modeled by HMMs, defines a factorial

HMM for that sentence, since the overall Markov
process for that sentence can be factored into inde-
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These counts for 664,673 noun phrases were col-
lected by Ji and Lin (2009) from the Google Ngram
Corpus (Lin et al., 2010). We use a simple heuris-
tic to obtain a list of animate (google animate) and
inanimate nouns (google inanimate) from this list.
The head of each NP is taken as a candidate noun.
If the noun does not occur with ‘who’ in any of the
noun phrases where it is the head, then it is inani-
mate. In contrast, if it appears only with ‘who’ in
all noun phrases, it is animate. Otherwise, for each
NP where the noun is a head, we check whether the
count of times the noun phrase appeared with ‘who’
is greater than each of the occurrences of ‘which’,
‘where’ and ‘when’ (taken individually) with that
noun phrase. If the condition holds for at least one
noun phrase, the noun is marked as animate.

When computing the features for an article, we
consider all nouns and pronouns as candidate words.
If the word is a pronoun and appears in our list of an-
imate pronouns, it is assigned an ‘animate’ label and
‘inanimate’ otherwise. If the word is a proper noun
and tagged with the PERSON NE tag, we mark it
as ‘animate’ and if it is a ORGANIZATION or LO-
CATION tag, the word is ‘inanimate’. For common
nouns, we check it if appears in the google animate
and inanimate lists. Any match is labelled accord-
ingly as ‘animate’ and ‘inanimate’. Note that this
procedure may leave some nouns without any labels.

Our features are counts of animate tokens
(ANIM), inanimate tokens (INAMIN) and both these
counts normalized by total words in the article
(ANIM PROP, INANIM PROP). Three of these fea-
tures had significantly higher mean values in the
TYPICAL category of articles: ANIM, ANIM PROP,
INANIM PROP. We found upon observation that sev-
eral articles that talk about government policies in-
volve a lot of references to people but are often in the
TYPICAL category. These findings suggest that the
‘human’ dimension might need to be computed not
only based on simple counts of references to people
but also involve finer distinctions between them.

3.3 Beautiful language
Beautiful phrasing and word choice can entertain
the reader and leave a positive impression. Multi-
ple studies in the education genre (Diederich, 1974;
Spandel, 2004) note that when teachers and expert
adult readers graded student writing, word choice

and phrasing always turn out as a significant factors
influencing the raters’ scores.

We implement a method for detecting creative
language based on a simple idea that creative words
and phrases are sometimes those that are used in un-
usual contexts and combinations or those that sound
unusual. We compute measures of unusual language
both at the level of individual words and for the com-
bination of words in a syntactic relation.
Word level measures: Unusual words in an ar-
ticle are likely to be those with low frequencies
in a background corpus. We use the full set of
articles (not only science) from year 1996 in the
NYT corpus as a background (these do not over-
lap with our corpus for article quality). We also ex-
plore patterns of letters and phoneme sequences with
the idea that unusual combination of characters and
phonemes could create interesting words. We used
the CMU pronunciation dictionary (Weide, 1998) to
get the phoneme information for words and built a 4-
gram model of phonemes on the background corpus.
Laplace smoothing is used to compute probabilities
from the model. However, the CMU dictionary does
not contain phoneme information for several words
in our corpus. So we also compute an approximate
model using the letters in the words and obtain an-
other 4-gram model.4 Only words that are longer
than 4 characters are used in both models and we fil-
ter out proper names, named entities and numbers.

During development, we analyzed the articles
from an entire year of NYT, 1997, with the three
models to identify unusual words. Below is the list
of words with lowest frequency and those with high-
est perplexity under the phoneme and letter models.

Low frequency. undersheriff, woggle, ahmok,
hofman, volga, oceanaut, trachoma, baneful, truffler,
acrimal, corvair, entomopter

High perplexity-phoneme model. showroom, yahoo,
dossier, powwow, plowshare, oomph, chihuahua, iono-
sphere, boudoir, superb, zaire, oeuvre

High perplexity-letter model. kudzu, muumuu, qi-
pao, yugoslav, kohlrabi, iraqi, yaqui, yakuza, jujitsu, oeu-
vre, yaohan, kaffiyeh

For computing the features, we consider only
nouns, verbs, adjectives and adverbs. We also
require that the words are at least 5 letters long

4We found that higher order n-grams provided better pre-
dictions of unusual nature during development.
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and do not contain a hyphen5. Three types of
scores are computed. FREQ NYT is the aver-
age of word frequencies computed from the back-
ground corpus. The second set of features are
based on the phoneme model. We compute the
average perplexity of words under the model,
AVR PHONEME PERP ALL. In addition, we also or-
der the words in an article based on decreasing per-
plexity values and the average perplexity of the top
10, 20 and 30 words in this list are added as fea-
tures (AVR PHONEME PERP 10, 20, 30). We ob-
tain similar features from the letter n-gram model
(AVR CHAR PERP ALL, AVR CHAR PERP 10, 20,
30). In phoneme features, we ignore words that do
not have an entry in the CMU dictionary.
Word pair measures: Next we attempt to detect un-
usual combinations of words. We do this calculation
only for certain types of syntactic relations–a) nouns
and their adjective modifiers, b) verbs with adverb
modifiers, c) adjacent nouns in a noun phrase and
d) verb and subject pairs. Counts for co-occurrence
again come from NYT 1996 articles. The syntactic
relations are obtained using the constituency and de-
pendency parses from the Stanford parser (Klein and
Manning, 2003; De Marneffe et al., 2006). To avoid
the influence of proper names and named entities,
we replace them with tags (NNP for proper names
and PERSON, ORG, LOC for named entities).

We treat the words for which the dependency
holds as a (auxiliary word, main word) pair. For
adjective-noun and adverb-verb pairs, the auxiliary
is the adjective or adverb; for noun-noun pairs, it is
the first noun; and for verb-subject pairs, the auxil-
iary is the subject. Our idea is to compute usualness
scores based on frequency with which a particular
pair of words appears in the background.

Specifically, we compute the conditional proba-
bility of the auxiliary word given the main word
as the score for likelihood of observing the pair.
We consider the main word as related to the article
topic, so we use the conditional probability of auxil-
iary given main word and not the other way around.
However, the conditional probability has no infor-
mation about the frequency of the auxiliary word. So
we apply ideas from interpolation smoothing (Chen

5We noticed that in this genre several new words are created
using hyphen to concatenate common words.

ADJ-NOUN ADV-VERB
hypoactive NNP suburbs said
plasticky woman integral was
psychogenic problems collective do
yoplait television physiologically do
subminimal level amuck run
ehatchery investment illegitimately put

NOUN-NOUN SUBJ-VERB
specification today blog said
auditory system briefer said
pal programs hr said
steganography programs knucklehead said
wastewater system lymphedema have
autism conference permissions have
Table 1: Unusual word-pairs from different categories

and Goodman, 1996) and compute the conditional
probability as a interpolated quantity together with
the unigram probability of the auxiliary word.

p̂(aux|main) = �⇤p(aux|main)+(1��)⇤p(aux)

The unigram and conditional probabilities are
also smoothed using Laplace method. We train the
lambda values to optimize data likelihood using the
Baum Welch algorithm and use the pairs from NYT
1997 year articles as a development set. The lambda
values across all types of pairs tended to be lower
than 0.5 giving higher weight to the unigram proba-
bility of the auxiliary word.

Based on our observations on the development
set, we picked a cutoff of 0.0001 on the proba-
bility (0.001 for adverb-verb pairs) and consider
phrases with probability below this value as un-
usual. For each test article, we compute the num-
ber of unusual phrases (total for all categories)
as a feature (SURP) and also this value normal-
ized by total number of word tokens in the article
(SURP WD) and normalized by number of phrases
(SURP PH). We also compute features for indi-
vidual pair types and in each case, the number of
unusual phrases is normalized by the total words
in the article (SURP ADJ NOUN, SURP ADV VERB,
SURP NOUN NOUN, SURP SUBJ VERB).

A list of the top unusual words under the different
pair types are shown in Table 1. These were com-
puted on pairs from a random set of articles from our
corpus. Several of the top pairs involve hyphenated
words which are unusual by themselves, so we only
show in the table the top words without hyphens.
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zani et al., 1996; Mooney and Roy, 2000); and c) is
easy to read for a target readership. Shorter words
(Flesch, 1948), less complex syntax (Schwarm and
Ostendorf, 2005) and high cohesion between sen-
tences (Graesser et al., 2004) typically indicate eas-
ier and more ‘readable’ articles.

Less understood is the question of what makes an
article interesting and beautifully written. An early
and influential work on readability (Flesch, 1948)
also computed an interest measure with the hypoth-
esis that interesting articles would be easier to read.
More recently, McIntyre and Lapata (2009) found
that people’s ratings of interest for fairy tales can be
successfully predicted using token-level scores re-
lated to syntactic items and categories from a psy-
cholinguistic database. But large scale studies of in-
terest measures for adult educated readers have not
been carried out.

Further, there have been little attempts to measure
article quality in a genre-specific setting. But it is
reasonable to expect that properties related to the
unique aspects of a genre should contribute to the
prediction of quality in the same way that domain-
specific spelling and grammar correction (Cucerzan
and Brill, 2004; Bao et al., 2011; Dale and Kilgar-
riff, 2010) techniques have been successful.

Here we address the above two issues by develop-
ing measures related to interesting and well-written
nature specifically for science journalism. Central
to our work is a corpus of science news articles with
two categories: written by popular journalists and
typical articles in science columns (Section 2). We
introduce a set of genre-specific features related to
beautiful writing, visual nature and affective content
(Section 3) and show that they have high predictive
accuracies, 20% above the baseline, for distinguish-
ing our quality categories (Section 4). Our final sys-
tem combines the measures for interest and genre-
specific features with those proposed for identifying
readable, well-written and topically interesting arti-
cles, giving an accuracy of 84% (Section 5).

2 Article quality corpus
Our corpus1 contains chosen articles from the larger
New York Times (NYT) corpus (Sandhaus, 2008),
the latter containing a wealth of metadata about each

1Available from http://www.cis.upenn.edu/

˜nlp/corpora/scinewscorpus.html

article including author information and manually
assigned topic tags.

2.1 General corpus
The articles in the VERY GOOD category include all
contributions to the NYT by authors whose writing
appeared in “The Best American Science Writing”
anthology published annually since 1999. Articles
from the science columns of leading newspapers are
nominated and expert journalists choose a set they
consider exceptional to appear in these anthologies.
There are 63 NYT articles in the anthology (between
years 1999 and 2007) that are also part of the digital
NYT corpus; these articles form the seed set of the
VERY GOOD category.

We further include in the VERY GOOD category
all other science articles contributed to NYT by the
authors of the seed examples. Science articles by
other authors not in our seed set form the TYPICAL
category. We perform this expansion by first creat-
ing a relevant set of science articles. There is no
single meta-data tag in the NYT which refers to all
the science articles. So we use the topic tags from
the seed articles as an initial set of research tags.
We then compute the minimal set of research tags
that cover all best articles. We greedily add tags
into the minimal set, at each iteration choosing the
tag that is present in the majority of articles that re-
main uncovered. This minimal set contains 14 tags
such as ‘Medicine and Health’, ‘Space’, ‘Research’,
‘Physics’ and ‘Evolution’.

We collect articles from the NYT which have at
least one of the minimal set tags. However, even
a cursory mention of a research topic results in a
research-related tag being assigned to the article. So
we also use a dictionary of research-related terms
to determine whether the article passes a minimum
threshold for research content. We created this dic-
tionary manually and it contains the following words
and their morphological variants (total 63 items).
We used our intuition about a few categories of re-
search words to create this list. The category is
shown in capital letters below.
PEOPLE: researcher, scientist, physicist, biologist, economist,
anthropologist, environmentalist, linguist, professor, dr, student
PROCESS: discover, found, experiment, work, finding, study,
question, project, discuss
TOPIC: biology, physics, chemistry, anthropology, primatology
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AddDiscourse tool (Pitler and Nenkova, 2009).
Interesting fiction (22 features): are those intro-
duced by McIntyre and Lapata (2009) for predicting
interest ratings on fairy tales. They include counts of
syntactic items and relations, and token categories
from the MRC psycholinguistic database. We nor-
malize each feature by the total words in the article.
Content: features are based on the words present
in the articles. Word features are standard in
content-based recommendation systems (Pazzani et
al., 1996; Mooney and Roy, 2000) where they are
used to pick out articles similar to those which a user
has already read. In our work the features are the
most frequent n words in our corpus after removing
the 50 most frequent ones. The word’s count in the
article is the feature value. Note that word features
indicate topic as well as other content in the article
such as sentiment and research. A random sample of
the word features for n = 1000 is shown below and
reflects this aspect. “matter, series, wear, nation, ac-
count, surgery, high, receive, remember, support, worry,
enough, office, prevent, biggest, customer”.

Table 2 compares the accuracies of SVM classi-
fiers trained on features from different classes and
their combinations.6 The readability, well-written
nature and interesting fiction classes provide good
accuracies 60% and above. The genre-specific
interesting-science features are individually much
stronger than these classes. Different writing as-
pects (without content) are clearly complementary
and when combined give 76% to 79% accuracy for
the ‘any-topic’ task and 74% for the topic pairs task.

The simple bag of words features work remark-
ably well giving 80% accuracy in both settings. As
mentioned before these word features are a mix of
topic indicators as well as other content of the ar-
ticles, ie., they also implicitly indicate animacy, re-
search or sentiment. But the high accuracy of word
features above all the writing categories indicates
that topic plays an important role in article quality.
However, despite the high accuracy, word features
are not easily interpretable in different classes re-
lated to writing as we have done with other writing
features. Further, the total set of writing features is

6For classifiers involving content features, we did not tune
the SVM parameters because of the small size of development
data compared to number of features. Default SVM settings
were used instead.

Feature set Any Topic Same
Interesting-science 75.3 68.0
Readable 65.5 63.0
Well-written 59.1 59.9
Interesting-fiction 67.9 62.8
Readable + well-writ 64.7 64.3
Readable + well-writ + Int-fict 71.0 70.3
Readable + well-writ + Int-sci 79.5 73.2
All writing aspects 76.7 74.7
Content (500 words) 81.7 79.4
Content (1000 words) 81.2 82.1

Combination: Writing (all) + Content (1000w)
In feature vector 82.6* 84.0*
Sum of confidence scores 81.6 84.9
Oracle 87.6 93.8
Table 2: Accuracy of different article quality aspects

only 102 in contrast to 1000 word features. In our
interest-science feature set, we aimed to highlight
how well some of the aspects considered important
to good science writing can predict quality ratings.

We also combined writing and word features to
mix topic with writing related predictors. We do the
combination in three ways a) word and writing fea-
tures are included together in the feature vector; b)
two separate classifiers are trained (one using word
features and the other using writing ones) and the
sum of confidence measures is used to decide on the
final class; c) an oracle method: two classifiers are
trained just as in option (b) but when they disagree
on the class, we pick the correct label. The oracle
method gives a simple upper bound on the accuracy
obtainable by combination. These values are 87%
for ‘any-topic’ and a higher 93.8% for ‘same-topic’.
The automatic methods, both feature vector combi-
nation and classifier combination also give better ac-
curacies than only the word or writing features. The
accuracies for the folds from 10 fold cross valida-
tion in the feature vector combination method were
also found to be significantly higher than those from
word features only (using a paired Wilcoxon signed-
rank test). Therefore both topic and writing features
are clearly useful for identifying great articles.

6 Conclusion
Our work is a step towards measuring overall arti-
cle quality by showing the complementary benefits
of general and domain-specific writing measures as
well as indicators of article topic. In future we plan
to focus on development of more features as well as
better methods for combining different measures.
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AddDiscourse tool (Pitler and Nenkova, 2009).
Interesting fiction (22 features): are those intro-
duced by McIntyre and Lapata (2009) for predicting
interest ratings on fairy tales. They include counts of
syntactic items and relations, and token categories
from the MRC psycholinguistic database. We nor-
malize each feature by the total words in the article.
Content: features are based on the words present
in the articles. Word features are standard in
content-based recommendation systems (Pazzani et
al., 1996; Mooney and Roy, 2000) where they are
used to pick out articles similar to those which a user
has already read. In our work the features are the
most frequent n words in our corpus after removing
the 50 most frequent ones. The word’s count in the
article is the feature value. Note that word features
indicate topic as well as other content in the article
such as sentiment and research. A random sample of
the word features for n = 1000 is shown below and
reflects this aspect. “matter, series, wear, nation, ac-
count, surgery, high, receive, remember, support, worry,
enough, office, prevent, biggest, customer”.

Table 2 compares the accuracies of SVM classi-
fiers trained on features from different classes and
their combinations.6 The readability, well-written
nature and interesting fiction classes provide good
accuracies 60% and above. The genre-specific
interesting-science features are individually much
stronger than these classes. Different writing as-
pects (without content) are clearly complementary
and when combined give 76% to 79% accuracy for
the ‘any-topic’ task and 74% for the topic pairs task.

The simple bag of words features work remark-
ably well giving 80% accuracy in both settings. As
mentioned before these word features are a mix of
topic indicators as well as other content of the ar-
ticles, ie., they also implicitly indicate animacy, re-
search or sentiment. But the high accuracy of word
features above all the writing categories indicates
that topic plays an important role in article quality.
However, despite the high accuracy, word features
are not easily interpretable in different classes re-
lated to writing as we have done with other writing
features. Further, the total set of writing features is

6For classifiers involving content features, we did not tune
the SVM parameters because of the small size of development
data compared to number of features. Default SVM settings
were used instead.

Feature set Any Topic Same
Interesting-science 75.3 68.0
Readable 65.5 63.0
Well-written 59.1 59.9
Interesting-fiction 67.9 62.8
Readable + well-writ 64.7 64.3
Readable + well-writ + Int-fict 71.0 70.3
Readable + well-writ + Int-sci 79.5 73.2
All writing aspects 76.7 74.7
Content (500 words) 81.7 79.4
Content (1000 words) 81.2 82.1

Combination: Writing (all) + Content (1000w)
In feature vector 82.6* 84.0*
Sum of confidence scores 81.6 84.9
Oracle 87.6 93.8
Table 2: Accuracy of different article quality aspects

only 102 in contrast to 1000 word features. In our
interest-science feature set, we aimed to highlight
how well some of the aspects considered important
to good science writing can predict quality ratings.

We also combined writing and word features to
mix topic with writing related predictors. We do the
combination in three ways a) word and writing fea-
tures are included together in the feature vector; b)
two separate classifiers are trained (one using word
features and the other using writing ones) and the
sum of confidence measures is used to decide on the
final class; c) an oracle method: two classifiers are
trained just as in option (b) but when they disagree
on the class, we pick the correct label. The oracle
method gives a simple upper bound on the accuracy
obtainable by combination. These values are 87%
for ‘any-topic’ and a higher 93.8% for ‘same-topic’.
The automatic methods, both feature vector combi-
nation and classifier combination also give better ac-
curacies than only the word or writing features. The
accuracies for the folds from 10 fold cross valida-
tion in the feature vector combination method were
also found to be significantly higher than those from
word features only (using a paired Wilcoxon signed-
rank test). Therefore both topic and writing features
are clearly useful for identifying great articles.

6 Conclusion
Our work is a step towards measuring overall arti-
cle quality by showing the complementary benefits
of general and domain-specific writing measures as
well as indicators of article topic. In future we plan
to focus on development of more features as well as
better methods for combining different measures.
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AddDiscourse tool (Pitler and Nenkova, 2009).
Interesting fiction (22 features): are those intro-
duced by McIntyre and Lapata (2009) for predicting
interest ratings on fairy tales. They include counts of
syntactic items and relations, and token categories
from the MRC psycholinguistic database. We nor-
malize each feature by the total words in the article.
Content: features are based on the words present
in the articles. Word features are standard in
content-based recommendation systems (Pazzani et
al., 1996; Mooney and Roy, 2000) where they are
used to pick out articles similar to those which a user
has already read. In our work the features are the
most frequent n words in our corpus after removing
the 50 most frequent ones. The word’s count in the
article is the feature value. Note that word features
indicate topic as well as other content in the article
such as sentiment and research. A random sample of
the word features for n = 1000 is shown below and
reflects this aspect. “matter, series, wear, nation, ac-
count, surgery, high, receive, remember, support, worry,
enough, office, prevent, biggest, customer”.

Table 2 compares the accuracies of SVM classi-
fiers trained on features from different classes and
their combinations.6 The readability, well-written
nature and interesting fiction classes provide good
accuracies 60% and above. The genre-specific
interesting-science features are individually much
stronger than these classes. Different writing as-
pects (without content) are clearly complementary
and when combined give 76% to 79% accuracy for
the ‘any-topic’ task and 74% for the topic pairs task.

The simple bag of words features work remark-
ably well giving 80% accuracy in both settings. As
mentioned before these word features are a mix of
topic indicators as well as other content of the ar-
ticles, ie., they also implicitly indicate animacy, re-
search or sentiment. But the high accuracy of word
features above all the writing categories indicates
that topic plays an important role in article quality.
However, despite the high accuracy, word features
are not easily interpretable in different classes re-
lated to writing as we have done with other writing
features. Further, the total set of writing features is

6For classifiers involving content features, we did not tune
the SVM parameters because of the small size of development
data compared to number of features. Default SVM settings
were used instead.

Feature set Any Topic Same
Interesting-science 75.3 68.0
Readable 65.5 63.0
Well-written 59.1 59.9
Interesting-fiction 67.9 62.8
Readable + well-writ 64.7 64.3
Readable + well-writ + Int-fict 71.0 70.3
Readable + well-writ + Int-sci 79.5 73.2
All writing aspects 76.7 74.7
Content (500 words) 81.7 79.4
Content (1000 words) 81.2 82.1

Combination: Writing (all) + Content (1000w)
In feature vector 82.6* 84.0*
Sum of confidence scores 81.6 84.9
Oracle 87.6 93.8
Table 2: Accuracy of different article quality aspects

only 102 in contrast to 1000 word features. In our
interest-science feature set, we aimed to highlight
how well some of the aspects considered important
to good science writing can predict quality ratings.

We also combined writing and word features to
mix topic with writing related predictors. We do the
combination in three ways a) word and writing fea-
tures are included together in the feature vector; b)
two separate classifiers are trained (one using word
features and the other using writing ones) and the
sum of confidence measures is used to decide on the
final class; c) an oracle method: two classifiers are
trained just as in option (b) but when they disagree
on the class, we pick the correct label. The oracle
method gives a simple upper bound on the accuracy
obtainable by combination. These values are 87%
for ‘any-topic’ and a higher 93.8% for ‘same-topic’.
The automatic methods, both feature vector combi-
nation and classifier combination also give better ac-
curacies than only the word or writing features. The
accuracies for the folds from 10 fold cross valida-
tion in the feature vector combination method were
also found to be significantly higher than those from
word features only (using a paired Wilcoxon signed-
rank test). Therefore both topic and writing features
are clearly useful for identifying great articles.

6 Conclusion
Our work is a step towards measuring overall arti-
cle quality by showing the complementary benefits
of general and domain-specific writing measures as
well as indicators of article topic. In future we plan
to focus on development of more features as well as
better methods for combining different measures.

350

|�Ãn�

�Yµ½�

Æŏ@śĺ�

Bag of words�

Bag of words"
ŅÆŏ@śĺ�

Æŏ@śĺŃ!

�įŀĽƍ!

(`ƕωƕ´)!



ŎŅő�

•  ��ŉóŉz[ňűƀŞƊ¦�ŉÃnŜ|�"
– űƀŞƊƑ�Ñŉ¸Zä�"
– �4nŜ·ĶĽ"

•  \ėį�8*ŇŉńŊƓ"
– ¦ň|�ĶĽÃnŉ�4nŉ�çį�8*ňmī�

•  ï�ŉóz[ŉéńŊŇĪ"
–  journal: ƎZ�ŇņŉƏčêƐjournalism: �Ñčê"
– ÔĪï�į�ĳŘŕīňŇŘśĳńŊŇĪ(´ƋωƋƔ)"

ğĝ�ĜĞĚěĤĚěĤ� ACL!2013Mċ�ð;3PF�



Ļŉ
Ɛď°ĮŀĽµ½�

•  Good, Great, Excellent: Global Inference of Semantic 
Intensities"
–  Good < Great < ExcellentŉŕīŇÙ«ŉfĵŜ©i"
–  �Ēńŉć�ƎGood < Great, Great < ExcellentƏŜŎĹ=iĶƐ$
�Ŝ�Ā6"

•  ImpAr: A Deterministic Algorithm for Implicit Semantic Role 
Labelling"
–  SRLňĭĳŘimplicit argumentŜ"

•  ùëŉĒŜ%�ĸŘnó"
•  ĂwĂVn"

–  ĮŖDeterministicň� "

•  BRAINSUP: Brainstorming Support for Creative Sentence 
Generation"

ĜĞĚěĤĚěĤ� ACL!2013Mċ�ð;3PF� ğĞ�



ŎŅő�

•  ACL2013ň;3ĶĽ"
– ;3ĸŘĴŅňqËįĩŘ"

•  �Łŉï�ŜÅ�ĶĽ!

– Grounded Language Learning from Video 
Described with Sentences"

– What Makes Writing Great?  
First Experiments on Article Quality Prediction in 
the Science Journalism Domain"

•  �bŊżƇūƁŝńĸ!

– Èő+ŗŊ2014/1/10Ɛ!Ĭŕī�

ğğ�ĜĞĚěĤĚěĤ� ACL!2013Mċ�ð;3PF�


