

### 背黒

最近よ〈ある論文の導入

インターネットの急速な発展に伴い、 利用可能なテキストの量が増加して...

医療分野では...

爆発的に

■子カルテの急速な発展に伴い。 利用可能なテキストの量が増加して、

### 目的と問題

- 目的:カルテの自動解析
  - より大規模な統計的研究ができる
  - (例) 喫煙と発癌率の相関関係は?
- BUT: そのためには
  - -(1)カルテ中に含まれる個人情報の削除
  - (2) 自然言語で書かれたカルテを処理する問題
    - (例)喫煙しているか否かをカルテ文章から分類できる かどうか?

# 概要 はじめに • Challenge 1: 個人情報の匿名化 Challenge 2: Smaring Challenge まとめ AMIA-i2b2 **Shared Task**

### 個人情報(Personal Heath Information)の匿名化

- タスク
  - 入力: カルテの文章
  - 出力: PHIを削除したカルテの文章

PHIとは

- HIPAA ガイドライン (Health Information Portability and Accountability Act)

固有表現抽出(NER)

組織名 AGE HOSPITAL DATE DOCTOR PHONE PATIENT LOCATION 地名 数值表現

### 先行研究

赤色 = PHI

辞書+規則ベース [Douglass2005]

- 地名辞書·人名辞書 - 規則「DR. XXX」

XXX = DOCTOR Precision 88.9% Recall 67.6% F (=1) 76.8

機械学習ベース [Sibanda HLTNAACL2006] SVMで単語の近傍

(前後2語)を素性

Precision 97.4% Recall 95.0% F (=1) 96.2

070203832

DH 8446543 4/2/2003 12:00:00 AM

ED DISCHARGE NOTIFICATION GUYNLUDZ, MRN:8446543

REGISTRATION DATE: 04/02/2003 07:18 AM PRELIMINARY REPORT

This is to notify you that your patient, GUYNLUDZ, STASIERDI arrived in the Emergency Department at

Daughtersvillshamen's Hospital on 04/02/2003 07:18 AM .If you need additional information

please call 613-870-0699. RCP Name : FYFE . PRERICK A Provider Number: 06880

"Ungrammatical & fragmented"









### 実験

- コーパス: I2b2-shared task
  - -671 records & 14,309 PHIs
  - 10-fold cross-validation

结里·

| MAT.                | Precision | Recall | F ( =1) |                    |
|---------------------|-----------|--------|---------|--------------------|
| [Sibanda2006]       | 97.4%     | 95.0%  | 96.2    | ) +0.3 point       |
| 1st CRF(BASELINE)   | 98.0%     | 95.2%  | 96.5    | <b>₹</b> 0.3 point |
| 1st CRF + Non-local | 98.4%     | 95.2%  | 96.8    |                    |
| 1st CRF + 2nd CRF   | 97.4%     | 95.8%  | 96.5    | / +1.3 point       |
| PROPOSED            | 98.3%     | 96.6%  | 97.5    | ~                  |
|                     |           |        |         |                    |

### 実験

- コーパス: I2b2-shared task
  - -671 records & 14.309 PHIs
  - 10-fold cross-validation

結果:

|                     | Precision | Recall | F ( =1) |             |
|---------------------|-----------|--------|---------|-------------|
| [Sibanda2006]       | 97.4%     | 95.0%  | 96.2    |             |
| 1st CRF(BASELINE)   | 98.0%     | 95.2%  | 96.5    | +0.3 point  |
| 1st CRF + Non-local | 98.4%     | 95.2%  | 96.8    | 7+0.3 point |
| 1st CRF + 2nd CRF   | 97.4%     | 95.8%  | 96.5    |             |
| PROPOSED            | 98.3%     | 96.6%  | 97.5    | 1           |

### 実験

- コーパス: I2b2-shared task
  - -671 records & 14.309 PHIs
  - 10-fold cross-validation

結果:

| MIT.                | Precision | Recall | F ( =1) |              |
|---------------------|-----------|--------|---------|--------------|
| [Sibanda2006]       | 97.4%     | 95.0%  | 96.2    |              |
| 1st CRF (BASELINE)  | 98.0%     | 95.2%  | 96.5    |              |
| 1st CRF + Non-local | 98.4%     | 95.2%  | 96.8    | ) +0.0 point |
| 1st CRF + 2nd CRF   | 97.4%     | 95.8%  | 96.5    | <            |
| PROPOSED            | 98.3%     | 96.6%  | 97.5    |              |
|                     |           |        |         | •            |

### PHIタイプ別の精度

- 先ほどの精度 = PHI/nonPHIの判定精度
- PHIタイプ別制度では2nd CRFの貢献が見られる

|          | 1st CRF   |        |         |  |  |
|----------|-----------|--------|---------|--|--|
|          | Precision | Recall | F ( =1) |  |  |
| AGE      | 33.3%     | 7.69%  | 12.5    |  |  |
| DATE     | 98.3%     | 94.5%  | 96.4    |  |  |
| DOCTOR   | 93.7%     | 90.8%  | 92.2    |  |  |
| HOSPITAL | 94.0%     | 88.4%  | 91.1    |  |  |
| ID       | 96.8%     | 98.2%  | 97.5    |  |  |
| LOCATION | 69.1%     | 45.1%  | 54.6    |  |  |
| PATIENT  | 84.8%     | 83.6%  | 84.2    |  |  |
| PHONE    | 97.0%     | 93.1%  | 95.0    |  |  |
| ALL      | 95.6%     | 92.9%  | 94.2    |  |  |

| 1s     | 1st CRF + 2nd CRF |           |      |     |    |
|--------|-------------------|-----------|------|-----|----|
| Precis | ion R             | ecall     | F(   | =1) |    |
| 33.39  | % 7               | .69%      | 12   | .5  |    |
| 98.09  | % 9               | 5.1%      | 96   | .5  |    |
| 93.09  | % 9               | 1.1%      | 92   | .1  |    |
| 93.09  | % 9               | 1.1%      | 92   | .0  |    |
| 96.89  | % 9               | 8.2%      | 97   | .5  | À  |
| 54.6   | % 4               | 5.1%      | 49   | .4  | B. |
| 84.09  | % 8               | 4.8%      | 84   | 4   |    |
| 97.09  | % 9               | 3.1%      | 95   | .0  |    |
| 95.19  | % 9               | 3.5%      | 94   | 3   |    |
| 440000 |                   | <b>効果</b> | あり / | 効果  | なし |

### 考察とまとめ

- 考察
  - (これまでカルテ匿名化ではGLOBALな情報は無益だと してきた)
  - BUT: いくつかは貢献することが判った
  - 人間の精度 (precision 98%; recall 95%) < 提案手法</li>
     これまで人間数人のユニオンをとっていたが、その中の一人として参加可能
- 今後の課題
  - GLOBALな素性をより多く/スマートに取り込みたい
  - 例えば: One person per recordの原則
    - 「1 record には 1 患者しかいない」

BUT: 患者は人名「PATIENT」 になることもあれば 患者「ID」 となることもある



## 喫煙履歴の自動分類

- タスク
  - 入力: カルテの文章
  - 出力: 患者の喫煙状況
- 喫煙状況(5値分類)

SMOKER CURRENT-SMOKER
PAST-SMOKER
NON-SMOKER

UNKNWON

問題: 喫煙に関する文章はわず か数文(多くの場合,一文のみ)

071962960 BH 4236518 417454 12/10/2001 12:00:00 AM

HISTORY OF INTRAVENOUS DRUG ABUSE ( HEROIN ). PATIENT DENIES CURRENT USE. PATIENT REPORTS OCCASIONAL ALCOHOL USE. HAS BEEN SMOKING APPROXIMATELY 10 CIGARETTES A DAY. CLAIMS TO HAVE STOPPED A; FEW WEEKS AGO; MARRIED WITH TWO CHILDREN.

#### 提案手法 • 先行研究: なし!? 提案手法のフレームワーク SMOKING STATUS SENTECE IR module (BM25+kNN) Extraction output module Training Extraction corpus S3 DB module 類似した文を選択 喫煙に関する文(S3)を抽出 その文と同じクラスに分類

### Extraction モジュール

キーワードを含む文を喫煙に関する文とみなす



• キーワードを含むがなければ UNKNOWN とする

単純な方法だが、喫煙ドメインに <sub>喫煙に</sub> 関してはclear-cutできる S,N,C,P

喫煙に関する文が抽出される割合 I,C,P 98.6% (=144/146)

UNKNOWN 1.1% (=3/252)

### 予備実験

• 抽出された喫煙に関する文

| NON-SMOKER     | She does not <b>smoke tobacco</b> .                                                 |  |  |  |
|----------------|-------------------------------------------------------------------------------------|--|--|--|
| NON-SWOKER     | The patient does not <b>smoke</b> .                                                 |  |  |  |
| SMOKERS        | PAST MEDICAL HISTORY is remarkable for chronic lung disease due to <b>smoking</b> . |  |  |  |
|                | 11. history of cigarette smoking ,                                                  |  |  |  |
| PAST-SMOKER    | He is not a current <b>smoker</b> .                                                 |  |  |  |
| TAST-SWORLK    | She quit <b>smoking</b> nine years ago .                                            |  |  |  |
| CURRENT-SMOKER | Please attempt to quit smoking                                                      |  |  |  |
|                | Smokes one pack per day x 40 years .                                                |  |  |  |

### 提案手法

- 先行研究: なし!?
- 提案手法のフレームワーク



#### BM25[Robertson1995]+kNN[Cover1967]

BM25で人力文とトレーニングセットの喫煙に関する文の類似度を計算

入力文の喫煙に関する文: He does not smoke

BM25類似度 文のクラス 480 [NON-SMOKER] The patient does not smoke . 312 [NON-SMOKER] She does not smoke tobacco . 252 [PAST-SMOKER] She quit smoking nine years ago .

• 類似度の高い上位k個の重み付き和でクラスを決定

480 + 312 [NON-SMOKER] > 252 [PAST-SMOKER]

### 結果&考察

• 466 recordを用いて実験 (2-fold cross-validation)

| BASELINE 1     | 77.9% | ←S3 が抽出された場合すべてNとする |
|----------------|-------|---------------------|
| BASELINE 2     | 86.0% | ← BM25ではな〈編集距離を用いる  |
| PROPOSED (k=1) | 81.6% |                     |

PROPOSED (k=10) 88.9%

PROPOSED (k=20) 86.7%

今回の提案手法自体が BASELINEのようなもの

- 考察
  - BM25+KNNというBOWな手法で88.9%
  - これ以上の精度を求めるためには、より深い処理を行う必要
  - BUT: まともな文が少ないので構文解析など困難
  - リーズナブルな解決法を模索している段階

### 概要

- はじめに
- Challenge1: 個人情報の匿名化
- Challenge2: Smoking Challenge
- まとめ

### まとめ

- 医療分野における自然言語処理
  - 医療オントロジー
  - 個人情報の削除

NLPタスク

- カルテの自動分類
- BUT: 研究者が少ない(日本では数人)

医療分野はNLP研究者を 広く(切実に)募集しております

